Control of gill ventilation and air-breathing in the bowfin amia calva

نویسندگان

  • Hedrick
  • Jones
چکیده

The purpose of this study was to investigate the roles of branchial and gas bladder reflex pathways in the control of gill ventilation and air-breathing in the bowfin Amia calva. We have previously determined that bowfin use two distinct air-breathing mechanisms to ventilate the gas bladder: type I air breaths are characterized by exhalation followed by inhalation, are stimulated by aquatic or aerial hypoxia and appear to regulate O2 gas exchange; type II air breaths are characterized by inhalation alone and possibly regulate gas bladder volume and buoyancy. In the present study, we test the hypotheses (1) that gill ventilation and type I air breaths are controlled by O2-sensitive chemoreceptors located in the branchial region, and (2) that type II air breaths are controlled by gas bladder mechanosensitive stretch receptors. Hypothesis 1 was tested by examining the effects of partial or complete branchial denervation of cranial nerves IX and X to the gill arches on gill ventilation frequency (fg) and the proportion of type I air breaths during normoxia and hypoxia; hypothesis II was tested by gas bladder inflation and deflation. Following complete bilateral branchial denervation, fg did not differ from that of sham-operated control fish; in addition, fg was not significantly affected by aquatic hypoxia in sham-operated or denervated fish. In sham-operated fish, aquatic hypoxia significantly increased overall air-breathing frequency (fab) and the percentage of type I breaths. In fish with complete IX-X branchial denervation, fab was also significantly increased during aquatic hypoxia, but there were equal percentages of type I and type II air breaths. Branchial denervation did not affect the frequency of type I air breaths during aquatic hypoxia. Gas bladder deflation via an indwelling catheter resulted in type II breaths almost exclusively; furthermore, fab was significantly correlated with the volume removed from the gas bladder, suggesting a volume-regulating function for type II air breaths. These results indicate that chronic (3-4 weeks) branchial denervation does not significantly affect fg or type I air-breathing responses to aquatic hypoxia. Because type I air-breathing responses to aquatic hypoxia persist after IX-X cranial nerve denervation, O2-sensitive chemoreceptors that regulate air-breathing may be carried in other afferent pathways, such as the pseudobranch. Gas bladder deflation reflexly stimulates type II breaths, suggesting that gas bladder volume-sensitive stretch receptors control this particular air-breathing mechanism. It is likely that type II air breaths function to regulate buoyancy when gas bladder volume declines during the inter-breath interval.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evidence for membrane-bound carbonic anhydrase in the air bladder of bowfin (Amia calva), a primitive air-breathing fish.

The purpose of this study was to examine the subcellular distribution and isoenzyme characteristics of carbonic anhydrase from the gills and respiratory air bladder of bowfin Amia calva, a primitive air-breathing fish. Separation of subcellular fractions by differential centrifugation revealed that the vast majority of carbonic anhydrase from the gills of bowfin originated from the cytoplasmic ...

متن کامل

Air-breathing during activity in the fishes amia calva and lepisosteus oculatus

Many osteichthyan fishes obtain oxygen from both air, using a lung, and water, using gills. Although it is commonly thought that fishes air-breathe to survive hypoxic aquatic habitats, other reasons may be more important in many species. This study was undertaken to determine the significance of air-breathing in two fish species while exercising in oxygen-rich water. Oxygen consumption from air...

متن کامل

Periodic Air-breathing Behaviour in a Primitive Fish Revealed by Spectral Analysis

The ventilatory patterns of air-breathing fish are commonly described as 'arrhythmic' or 'irregular' because the variable periods of breath-holding are punctuated by seemingly unpredictable air-breathing events (see Shelton et al. 1986). This apparent arrhythmicity contrasts with the perceived periodism or regularity in the gill ventilation patterns of some fish and with lung ventilation in bir...

متن کامل

Characterisation of putative oxygen chemoreceptors in bowfin (Amia calva).

Serotonin containing neuroepithelial cells (NECs) are putative oxygen sensing cells found in different locations within the gills of fish. In this study we wished to determine the effect of sustained internal (blood) hypoxaemia versus external (aquatic) hypoxia on the size and density of NECs in the first gill arch of bowfin (Amia calva), a facultative air breather. We identified five different...

متن کامل

Characteristics of Mechanoreceptors in the Air-breathing Organ of the Holostean Fish, Amia Calva

Single nerve fibre discharge was recorded from mechanoreceptors associated with the air-breathing organ in double-pithed specimens of the bowfin, Amia calva L. These receptors were innervated by the vagus nerve and although their exact location was difficult to determine, most appeared to be located along the anterio-ventral wall of the single lung. All receptors increased tonic discharge with ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 202 1  شماره 

صفحات  -

تاریخ انتشار 1999